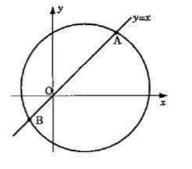
circles points of intersection


- [SQA] 1. A penny-farthing bicycle on display in a museum is supported by a stand at points A and C. A and C lie on the front wheel. With coordinate axes as shown and 1 unit = 5cm, the equation of the rear wheel (the small wheel) is $x^2 + y^2 - 6y = 0$ and the equation of the front wheel is $x^2 + y^2 - 28x - 20y + 196 = 0$.
 - (a) (i) Find the distance between the centres of the two wheels.
 - (ii) Hence calculate the clearance, i.e. the smallest gap, between the front and rear wheels. Give your answer to the nearest millimetre.
 - (b) B(7,3) is half-way between A and C, and P is the centre of the front wheel.
 - (i) Find the gradient of PB.
 - (ii) Hence find the equation of AC and the coordinates of A and C.

14	"	s١	í.
18	(C	,	l

(8)

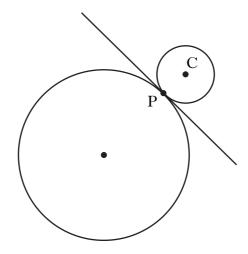
Part	Marks	Level	Calc.	Content	Answer	U2 OC4
<i>(a)</i>	8	С	CR	G9, G1		1994 P2 Q4
(b)	8	С	CR	G2, G5, G12		
(11)	 ² centr ³ dista ⁴ radiu ⁵ radiu ⁶ strate ⁶ centr ⁷ √245 	us = 3 us = 10 egy (clear es minus	een centr ance = d sum of r		(b) •9 •10 •11 •12 •13 •14 •15 •16	$m_{PB} = 1$ $m_{AC} = -1$ y - 3 = -(x - 7) for AC strategy: substitute substituting correctly $eg \ 2x^2 - 28x + 96 = 0$ x = 6, 8 (or y = 2, 4) (6, 4) and (8, 2)

- [SQA] 2. The straight line y = x cuts the circle
 - $x^{2} + y^{2} 6x 2y 24 = 0$ at A and B.
 - (a) Find the coordinates of A and B.
 - (b) Find the equation of the circle which has AB as diameter.

3 3

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
<i>(a)</i>	3	С	CN	G12		1994 P1 Q8
(b)	3	С	CN	G10		
•1 •2 •3	$x^{2} + x^{2} - (x+2)(x - (-2, -2))$	- 6) = 0		OR	• centre is (2, 2) • radius is $\sqrt{32}$ or equivaler • $(x-2)^2 + (y-2)^2 = 32$	t

- [SQA] 3. Circle P has equation $x^2 + y^2 8x 10y + 9 = 0$. Circle Q has centre (-2, -1) and radius $2\sqrt{2}$.
 - (a) (i) Show that the radius of circle P is $4\sqrt{2}$.
 - (ii) Hence show that circles P and Q touch.
 - (*b*) Find the equation of the tangent to the circle Q at the point (-4, 1).
 - (*c*) The tangent in (*b*) intersects circle P in two points. Find the *x*-coordinates of the points of intersection, expressing you answers in the form $a \pm b\sqrt{3}$.


				-			
Part	Marks	Level	Calc.	Content	Answer	U2 OC4	
<i>(a)</i>	2	С	CN	G9	proof	2001 P1 Q11	
<i>(a)</i>	2	A/B	CN	G14			
(b)	3	С	CN	G11	y = x + 5		
(C)	3	С	CN	G12	$x = 2 \pm 2\sqrt{3}$		
 •¹ ic: interpret centre of circle (P) •² ss: find radius of circle (P) •³ ss: find sum of radii •⁴ pd: compare with distance between centres 					• ¹ $C_{\rm P} = (4,5)$ • ² $r_{\rm P} = \sqrt{16+25-9} = \sqrt{32} = 4\sqrt{2}$ • ³ $r_{\rm P} + r_{\rm Q} = 4\sqrt{2} + 2\sqrt{2} = 6\sqrt{2}$ • ⁴ $C_{\rm P}C_{\rm Q} = \sqrt{6^2+6^2} = 6\sqrt{2}$ and "so touch"		
• ⁵ ss: find gradient of radius • ⁶ ss: use $m_1m_2 = -1$ • ⁷ ic: state equation of tangent					• ⁵ $m_{\rm r} = -1$ • ⁶ $m_{\rm tgt} = +1$ • ⁷ $y - 1 = 1(x + 4)$		
 •⁸ ss: substitute linear into circle •⁹ pd: express in standard form •¹⁰ pd: solve (quadratic) equation 					• ⁸ $x^{2} + (x+5)^{2} - 8x - 10(x-5)^{9}$ • ⁹ $2x^{2} - 8x - 16 = 0$ • ¹⁰ $x = 2 \pm 2\sqrt{3}$	(+5) + 9 = 0	

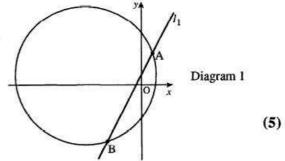
4

3

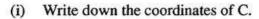
3

- 4. (a) (i) Show that the line with equation y = 3 x is a tangent to the circle with equation $x^2 + y^2 + 14x + 4y 19 = 0$.
 - (ii) Find the coordinates of the points of contact, P.
 - (*b*) Relative to a suitable set of coordinate axes, the diagram below shows the circle from (*a*) and a second smaller circle with centre C.

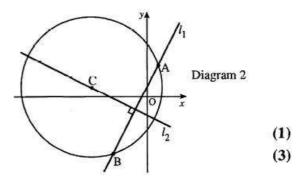
The line y = 3 - x is a common tangent at the point P.


The radius of the larger circle is three times the radius of the smaller circle.

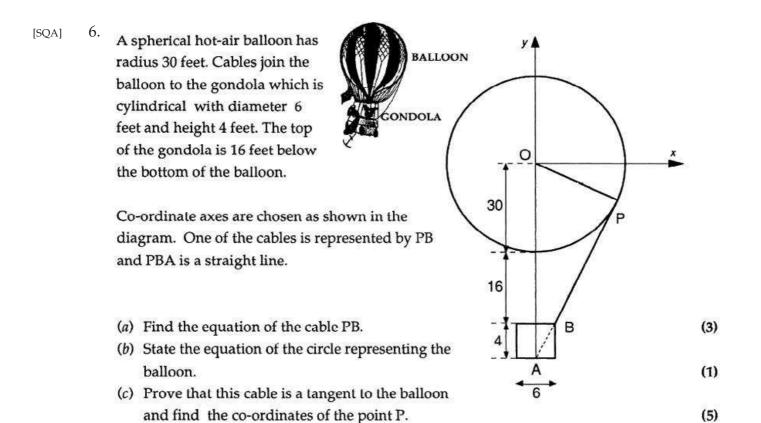
Find the equation of the smaller circle.


Part	Marks	Level	Calc.	Content	Answer	U2 OC4
<i>(ai)</i>	4	С	CN	G13	proof	2010 P2 Q3
(aii)	1	С	CN	G12	P(-1,4)	
<i>(b)</i>	6	В	CN	G9, G15	$(x-1)^2 + (y-6)^2 = 8$]
 •¹ ss: substitute •² pd: express in standard form •³ ic: start proof •⁴ ic: complete proof •⁵ pd: coordinates of P 					• ¹ $x^{2} + (3 - x)^{2} + 14x + 4(3 - x)^{2} + 14x + 4(3 - x)^{2} + 4x + 2 = 0$ • ² $2x^{2} + 4x + 2 = 0$ • ³ $2(x + 1)(x + 1)$ • ⁴ equal roots so line is a tar • ⁵ $x = -1, y = 4$,
•7 •8 •9 •10	ic: stat ss: find pd: find ss: stra ic: inte ic: stat	d radius d radius ategy for erpret ce	of large of smal finding ntre of	er circle ler circle	• ⁶ $(-7, -2)$ • ⁷ $\sqrt{72}$ • ⁸ $\sqrt{8}$ • ⁹ e.g. "Stepping out" • ¹⁰ $(1, 6)$ • ¹¹ $(x - 1)^2 + (y - 6)^2 = 8$	

5


- 5. Diagram 1 shows a circle with equation [SQA] $x^{2} + y^{2} + 10x - 2y - 14 = 0$ and a straight line, l_{1} , with equation y = 2x + 1. The line intersects the circle at A and B.
 - (a) Find the coordinates of the points A and B.

(b) Diagram 2 shows a second line, l_2 , which passes through the centre of the circle, C, and is at right angles to line l_1 .



(ii) Find the equation of the line l_2 .

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
<i>(a)</i>	5	С	CN	G12		1997 P2 Q1
(bi)	1	С	CN	G9		
(bii)	3	С	CN	G8, G3		

•1 (a) know to substitute correct substitution a "quadratic" = 0 x = -3, 1.5 y--5, 3 (b) $m_{diameter} = 2$ $m_{perpendicular} = -\frac{1}{2}$ centre = (-1, -1).9 equation: $y + 1 = -\frac{1}{2}(x+1)$

(a)
$$*^1$$
 Strategy: know to find m

•
$$m = \frac{4}{3}$$

$$y + 46 = \frac{4}{3}(x - 3)$$

(b)
$$\cdot^4 x^2 + y^2 = 900$$
 or equivalent

(c) •⁵ Strategy: know to substitute

$$x^{6} + \left(\frac{4}{3}x - 50\right)^{2} = 900$$

- •⁷ $(x-24)^2$ or evaluate the discriminant
- ⁸ communication relating to tangency
- •9 (24, -18)

[END OF QUESTIONS]